Text Searchable Document 00120301

DATA EVALUATION RECORD

CHEMICAL: Didecyl dimethyl ammonium chloride

FORMULATION: Bardac 22 (50%)

CITATION: Report: 48 Hour EC $_{50}$ and 96 Hour LC $_{50}$ of Calgon JJ-14 (Bardac 22) on Oyster Eggs and Straight-Hinge Larvae. Cannon Laboratories, Inc. for Calgon Corp., Dec. 19, 1974 (acc. # 249002).

REVIEWED BY: Ann Stavola

Aquatic Biologist

HED/EEB

DATE REVIEWED: February 2, 1983

TEST TYPE: Static acute aquatic toxicity

Oyster eggs and straight-hingelarvae

REPORTED RESULTS:

Eggs 9-hr $EC_{50} = 19 (9.5-38)$ ppm

Larvae LC50 Values
48h 10.5 (5.53-19.95) ppm
96h 6.4(2.46-16.64) ppm
144h 3 (2.37-11.48) ppm

REVIEWER'S CONCLUSIONS:

The study is scientifically sound and meets our guideline requirements for acute aquatic toxicity tests with oysters.

Test Procedures

Materials and Methods

Three female and five male adult oysters were induced to spawn in 28°C seawater. The sexes were separated after spawning commenced. Eggs and the SW medium were poured into a 1-liter cylinder and 3 one-m subsamples were counted in a Sedgewick-Rafter counting chamber. Each subsample was multiplied by 1000 to give the number of eggs in the cylinger.

The eggs were poured into a 2800-ml Fernbach flask and sperm were added to initiate fertilization. Three one - m\subsamples were removed after 1 1/2 hr. to see if fertilization had succeeded.

The test material was added to a series of 2800-ml Fernback flasks containing l-liter of filtered (10 microns) seawater. Each concentration was run in duplicate and there were 2 negative controls. The test was conducted $^{9}28^{\circ}\text{C}$. A sufficient volume of fertilized eggs was added to each flask to give a density of 30 eggs per ml. Three l-ml subsamples were removed at 9, 48 and 96 hours from each test concentration and control. The percentage of eggs affected was noted and the percent mortality for straight-hinge larvae determined. Food was added at 48-hr intervals at a density of 4×10^{5} cells/ml.

Statistical Analysis

Eggs were observed for abnormal development as compared to the control (expressed as % abnormal), and the larvae were observed for mortality. The EC_{50} and LC_{50} values were calculated with the Litchfield-Wilcoxon method.

Results and Discussion Egg Development at 9-Hours

Conc. ppm	<pre># with abnormal cleavage #treated eggs</pre>	% abnormal cleavage
25.0	*107/192	**56
12.5	82/192	42
6.2	40/192	20
3.1	11/192	6
1.5	8/192	4
0.75	4/192	2
0.09	4/192	2
Control	6/192	3

^{*} Average of 6 observations

^{**} Rounded off.

 $9-hr EC_{50} = 19 (9.5 - 38) ppm$

Straight-Hinge Larvae

Conc.	48-	h	72-	h	96 - h		120-h		144-h	
ppm.	A	В	A	В	A	В	A	В	A	В
			ļ		J					
25.0	132/192	69	146/192	76	155/192	81	167/192	87	176/192	92
12.5	111/192	58	125/192	65	138/192	72	148/192	77	159/192	83
6.0	65/192	34	75/192	39	83/192	43	94/192	49	109/192	57
3.1	31/192	16	52/192	27	65/192	34	79/192	41	92/192	48
1.5	21/192	11	31/192	16	40/192	21	46/192	24	57/192	30
0.75	17/192	9	27/192	14	33/192	17	42/192	22	54/192	28
0.09	6/192	3	10/192	5	15/192	8	19/192	10	25/192	13
Control	8/192	4	13/192	7	17/192	9	19/192	10	22/192	12

A = # dead treated larvae/# treated larvae

B = % mortality

Hr	LC50	95% Conf. limits (ppm)
48	10.5	(5.53 - 19.95)
72	9.40	(8.1 - 10.94)*
96	6.4	(2.46 - 16.64)
120	5.9	(5.13 - 6.85)*
144	3	(2.37 - 11.48)

* Calculated by Stephan's program with moving average method.

Reviewer's Evaluation

Materials and Methods

The procedures are acceptable.

Statistics Analysis

Recalculation with Stephan's program (using Abbott's formula to correct for control mortality) indicates the reported results are reliable.

Results and Discussion

Bardac 22 is slightly toxic to oyster eggs and moderately toxic to straight-hinge larvae.

Conclusions

Core